

ГХ-MC-MC анализатор Agilent для определения диоксинов в пищевых продуктах и сельскохозяйственных кормах

Диоксины и диоксиноподобные ПХБ — это вещества, загрязняющие окружающую среду, стойкие органические загрязнители (CO3). Они являются побочными продуктами промышленного производства, которые образуются, например, при отбеливании бумаги, производстве пестицидов и сжигании отходов. Такие соединения накапливаются в пищевой цепи, в основном в жировых тканях животных. Люди употребляют эти высокотоксичные соединения вместе с мясом, молочными продуктами, рыбой и другими продуктами животного происхождения.

Европейская комиссия и другие регулирующие органы вводят строгие ограничения допустимого уровня содержания диоксинов в пищевых продуктах и сельскохозяйственных кормах. В июне 2014 года газовая хроматография вместе с тандемной масс-спектрометрией (ГХ-МС-МС) были утверждены как надежные методы анализа согласно стандартам Евросоюза 589/2014 и 709/2014.

Надежное обнаружение и определение содержания диоксинов и фуранов с *первого* дня применения

НОВЫЙ трехквадрупольный ГХ-МС анализатор Agilent 7010 для определения диоксинов в пищевых продуктах и сельскохозяйственных кормах разработан на основе системы ГХ-МС-МС Agilent 7010. Обладая чувствительностью, в десять раз превышающей показатели конкурирующих тандемных квадрупольных систем, анализатор позволяет выявлять диоксины в меньшем количестве, чем предписывается Евросоюзом, гарантируя надежный результат.

К тому же, программное обеспечение анализатора оптимизирует отчетность, совмещая результаты анализа двух фракций пробы — на диоксины/фураны и на ПХБ. Прибор автоматически выполняет сложные вычисления, в том числе определение общей и частной концентрации, и объединяет данные в одном отчете, соответствующем критериям Евросоюза. В отчете соединения распределяются на четыре группы: диоксины, фураны, диоксиноподобные ПХБ и не схожие с диоксинами ПХБ.

Анализаторы Agilent для определения диоксинов в пищевых продуктах и сельскохозяйственных кормах объединяют в себе новейшие технологии ГХ и МС-МС, обеспечивая качество и высокую производительность благодаря перечисленным ниже особенностям.

Заводская настройка

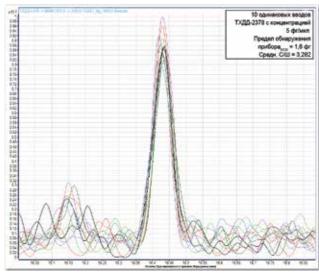
- Настройка системы и проверка герметичности
- Контроль прибора
- Установка валидированной колонки для ГХ DB-5ms UI
- Метод заводского контроля с использованием контрольной смеси для диоксинового анализатора

Комплект поставки

- Руководство пользователя по применению методики
- Дополнительное ПО для автоматизации отчетности
- Диск CD-ROM с параметрами методов и контрольными файлами данных для быстрого начала работы без дополнительных настроек
- Необходимые расходные материалы включены в поставку, никаких дополнительных заказов не требуется
- Доступные сведения о порядке заказа расходных компонентов

Установка

- Двойной заводской контроль с контрольной пробой выполняется на месте эксплуатации квалифицированным специалистом службы поддержки
- Возможно проведение дополнительных консультаций по эксплуатации


Соответствие строгим требованиям к предельно допустимому количеству диоксина

Анализатор для определения диоксинов в пищевых продуктах и сельскохозяйственных кормах на основе трехквадрупольной системы ГХ-МС Agilent 7010 прошел соответствующую настройку и заводскую химическую проверку. Это означает, что вы сможете быстрее начать работу с прибором и получать результаты сразу после доставки.

Расширенные характеристики:

- В комплекцию входит мультирежимный испаритель (MMI).
- Для диоксина и диоксиноподобных ПХБ используются *одинаковые* параметры ГХ, обеспечивающие простоту эксплуатации и повышенную производительность.
- RTL база (база фиксированных времен удерживания) на ПХБ 105.
- Для повышения чувствительности применяются нагреваемые квадруполи.
- Автоматическое выполнение сложных вычислений согласно стандартам Евросоюза.
- Новейшая технология составления отчетов, объединяющих результаты диоксино-фурановых фракций и фракций ПХБ.

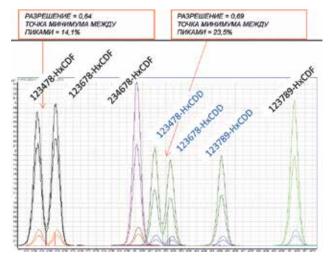
Непревзойденная воспроизводимость и чувствительность на уровне фемтограммов

В данном эксперименте было введено десять инъекций по 1 мкл 2,3,7,8-тетрахлордибензо-пара-диоксина при концентрации 5 фг/мкл. В среднем соотношение сигнала к шуму составило 3,282 при среднеквадратичном отклонении, равном 5.

Универсальность мультирежимного испарителя (MMI)

Мультирежимный испаритель позволяет использовать различные методики и объемы ввода. Мультирежимный испаритель поддерживает следующие режимы ввода: ввод с делением и без деления потока в горячий и холодный испаритель, с программированием давления или скорости потока, с отдувкой растворителя, а также прямой ввод пробы.

В некоторых случаях при анализе диоксинов предпочитают использовать большие объемы ввода, так как это позволяет улучшить соотношение сигнала и шума и понизить предел обнаружения. Одним из значительных преимуществ данного анализатора диоксинов и системы МС-МС 7010 является способность вводить небольшой объем пробы в колонку (1 мкл), при этом сохраняя возможность количественного определения соединений в таком следовом количестве при низкой концентрации. Режим с отдувкой растворителя позволяет вводить больший объем.



Надежный результат разделения изомеров гекса-ПХДД/Ф по стандартам EC

Отделение ПХДД и ПХДФ от интерферирующих веществ и коэлюентов является контрольным критерием согласно стандартам EC.

ГХ-МС-МС позволяет выявить и количественно измерить каждый из конгенеров.

Agilent предлагает возможность провести заводские испытания двух подготовленных по согласованию с заказчиком стандартных смесей для выявления определяемого вещества в каждой фракции пробы (диоксин, фуран, диоксиноподобные ПХБ и не диоксиноподобные ПХБ) и при разделении.

Хроматограмма изомеров гекса-ПХДД/Φ (по 2 перехода для нативного соединения и соединения, маркированного С13, при среднем уровне калибровки) и их разделения, полученная по стандартам EC.

Простая и настраиваемая система отчетности

Обработка данных и составление отчетов по стандартам являются сложными процедурами, требующими длительного времени.

Согласно стандартам ЕС, в отчетах необходимо указывать как можно больше информации, чтобы облегчить интерпретацию результатов. Расчеты должны включать поправку на холостую пробу, определение предела количественного обнаружения и вычисление нижних, верхних и средних пределов отдельных ПХДД, ПХДФ и диоксиноподобных ПХБ.

Компания Agilent в соответствии со стандартами EC разработала специальные программные сценарии и настраиваемую систему составления отчетов для анализа диоксина и диоксиноподобных ПХБ в пищевых продуктах и сельскохозяйственных кормах.

Analysis Time	D/(MassHur	ver/Deta/Diss	in_Storg_20	rtelf lesiQuer	thesults/p0701,	nevMethod.batch	h.bin	
CONTRACTOR CONTRACTOR	9/26/2004 2	12120156 PM	Analyst	Name	ACELENT/swee	hand		
Report Time	1/14/2015 2	2:53:04 PM	Reporter Name		quechan1			
Last Calib Update	5/30/2004 1	1:08:47 AM	Batch S	tate	Processed			
Data File	1000A_0L_PCD0.D + 1000A_0L_PCB.D							
Compound	RT [min]	rod	Conc [rg/m/]	TEF Conc	Upper Bound (rg/ml)	Medium Bound [ng/m]	Lower Bound [rg/ml]	WHQ-TE
Dioxina								
2378-TCDD	20.73	0.020	2.98	2,9801	2,98012	2,98012	2,98012	
12379-ReCDO	34.32	0.030	0.86	0.8580	0.85796	0.85796	0.05796	
123478-HyCDD	27,98	0.020	0.75	0.0752	0.07520	0.07530	0.07520	0.
123678-HwCDD	28,10	0.140	2.02	0.2021	0.20208	0.20208	0.20238	0.
123799-HwCDD	20.46	0.060	4.21	0.4210	0.42103	0.42100	0.42133	0.
1234678-HpCDD	12.93	0.440	10.33	0.1033	0.10327	0.10327	0.10327	0.0
OCDB	39,34	1,990	129.32	0,0388	0.43880	0.03880	0.03880	0,800
	20.24	Libra	In Proper	***************************************	0.00000	0.000001	0.000001	000000
Furans	I med		200			a asc1		_
2378-TCD#	20.30	0.300	0.86	0.0657	0.88570	0.08570	0.06570	0.
12379-PeCDF	23.27	0.560	0.84	0.0252	0.02524	0.02524	0.02524	0.0
23475-PeCDP	24,06	0.060	0.55	0.2625	0,26254	0.25254	0.26254	0.
123470-HvCDF	27.02	0.070	0.79	0.0706	0.87050	0.07658	0.07658	0.
123678-HvCDF	27.15	0.060	0.82	0.0821	0.08205	0.08205	0.08205	ô.
234676-WvCDF	27.79	0.000	0.90	0.0796	0.67963	0.07963	0.07963	0.
123799-HxCDF	28,94	0.180	0.80	0.0800	0.88063	0,08003	0.08033	0.
1234678-HpCDF	31.09	0.550	4.24	0.0424	0.04242	0.04242	0.04242	0.0
1234709-HpCDF	33.92	0.020	0.81	0.0081	0.00013	0.00613	0.00613	0.0
OCDF	39,77	0.600	0.74	0.0002	0.00022	0.00022	0.00022	0.800
PCDD/Fs Sum			162.04	5.42	5.42	5.42	5.42	
PCBs Dioxin Like								
PCB 81	17.71	3,670	0.49	0.0025	0.80255	0.00255	0.00255	0.800
PCB 77	18.02	49,660	8,46 *	0,0008	0.80497	0.00248		0.800
PCB 126	20.92	1,370	0.59	0.0505	0.85852	0.05052	0.05652	0.
PCB 169	24.17	0.070	0.46	0.2539	0.25367	0.25367	0.25307	0.0
PCB-123(MO)	10.70	9,100	1470.13	0.4410	0.44104	0,44304	0.44334	0.800
PCB-118(MC)	18,73	601,100	517.57 *	0.1553	0,18033	0.09017	2.712	0,000
PCB-114(MO)	19.42	15,200	1402.45	0.4447	0.44473	0.44473	0.44473	0.800
		187,600						0.800
PCB-105(MO)	19.42 21.54		1703.27	0.5110	0.51098	0.53096	0.53098	
PCB-156(MO) PCB-156(MO)	22.50	14,000	127.23 45.03	0.0382	0.03817	0.03817	0.03817	0.800
PCB-157(MO)	22,71	3,300	145.29	0.0436	0.04359	0.04359	0.04359	0.800
PCB-189(MO)	25,74	1,200	36.69	0.0110	0.01101	0.01101	0.01131	0.800
DLPCBs Sum			5561.65	2.77	2.80	2.71	2.62	
PCBs Non Dioxin Like								
PC8-18(Ind)	14.19	994,600	982.47 *		994,60000	497,30000	0	
PCB-52(ind)	14,70	1909-200	917.99 *		1909,20000	954,60000	0	
PCB-101(Ind)	16.80	1303.300	913.96 *		1303.30000	651.65000	0	
	19.42	171,700	1045,04		1045,84204	1045,04204	1045,04234	
PC8-153(ind)	20.44	361,700	1095.32		1095,32241	1095,32241	1095,32241	
		34,900	2430,77		2430,76682	2400,76682	2430,76682	
PCB-153(ind) PCB-130(ind) PCB-180(ind)	23,13							

Программное обеспечение для составления отчетов объединяет результаты измерения диоксинов, фуранов и ПХБ (диоксиноподобных и не диоксиноподобных) в одном отчете, соответствующем стандартам EC.

Более высокая чувствительность означает не только снижение уровня шума

Чувствительность МС зависит от количества регистрируемых ионов. Высокоэффективный источник ионизации электронным ударом в трехквадрупольной системе ГХ-МС 7010 максимизирует количество ионов, образованных и перенесенных из тела источника в квадрупольный анализатор, что обеспечивает следующие преимущества:

- Повышение чувствительности и точности на всех уровнях.
- Снижение пределов обнаружения.
- Повышение точности изотопного соотношения и информативности результатов.

Скоростной и высокопроизводительный анализ в вашей лаборатории.

Свяжитесь с региональным представителем Agilent или уполномоченным дистрибьютором Agilent: agilent.com/chem/contactus.

Телефон: **+7 495 664 73 00** (Российская Федерация)

Описание доступных анализаторов и прикладных наборов: agilent.com/chem/appkits.

Информация в данном документе может быть изменена без предупреждения.

© Agilent Technologies, Inc., 2015 Напечатано в США 26 января 2015 г. 5991-5471RU Не просто отдельный прибор:

Широкий выбор продукции и услуг для любых областей применения

Решения для конкретных аналитических задач

Анализаторы Agilent позволяют значительно сократить время между поставкой оборудования и окончательной валидацией. Настроенное на заводе оборудование и инструменты под конкретные методики разделения позволяют сосредоточиться на калибровке и валидации в соответствии с СОП вашей лаборатории.

Лучшие в своем классе технологии, работающие на вашу лабораторию

Специализированное оборудование Agilent поможет решить даже самые сложные задачи. Например, наш газовый хроматограф 7890 является самым распространенным в мире. Он включает в себя гибкую высокопроизводительную систему ввода с улучшенным электронным регулятором давления, что обеспечивает точность подачи потока и давления, а также воспроизводимое время удерживания.

Высококачественные колонки и материалы от мирового лидера газовой хроматографии

Разработанные Agilent колонки для ГХ и материалы отвечают требованиям продуктового и экологического контроля:

- Долгосрочная надежность и производительность.
- Интуитивно понятный принцип работы.
- Ускоренный анализ без снижения разрешения.

Профессиональное обслуживание и поддержка в месте эксплуатации и дистанционно

Независимо от того, возникает ли необходимость в техническом сопровождении одного прибора или оборудования различных поставщиков в нескольких лабораториях, специалисты службы поддержки Agilent помогут быстро устранить любые проблемы, добиться бесперебойной работы и сконцентрироваться на основной задаче. Agilent уже сорок лет является лидером отрасли и предоставляет квалифицированную помощь в разработке методов и их дальнейшем применении.

Сведения о порядке заказа

Каталожный номер	Описание анализатора
Серия G3445, № 422	ГХ-МС-МС анализатор диоксинов в пищевых продуктах и сельскохозяйственных кормах

